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Abstract 
A new algorithm to determine the number and value of

realistic worst-case models for the performance of module
library components is presented in this paper. The proposed
algorithm employs Principal Components Analysis (PCA)
at the performance level to identify the main independent
sources of variance for the performance of a set of library
modules. Response Surfaces Methodology (RSM) and
Propagation Of Variance (POV) based algorithms are used
to efficiently compute the performance level covariance
matrix and non-linear maximum likelihood optimization to
trace back worst case models at the SPICE level. The effec-
tiveness of the proposed methodology has been demon-
strated by determining a realistic set of worst case models
for a 0.25µm CMOS standard cell library.

1.Introduction

The determination of realistic worst case models for syn-
thesis and simulation of VLSI circuits and systems in deep
submicron technologies is a critical task because it directly
affects the performance of the fabricated circuits. It has
been observed [1] that a relatively small increase of circuit
performance can be obtained by further scaling the mini-
mum feature size because of the saturation of current,
power supply scaling and deep sub-micron effects such as
increased interconnect resistance and crosstalk. 
Overly pessimistic worst case models, by further tearing
down a consistent part of the performance margin, may
cause wrong design decisions or dictate the need for newer,
expensive technologies also in cases when a more conser-
vative and cheaper fabrication process could have been
used instead [2]. 
These or similar observations have motivated a number of
research activities on this subject, which yielded a set of
tools and methodologies for the realistic worst case model-

ing of integrated electronic devices [5]-[8]. In particular,
authors in [7] have addressed the issue of using cell level
performance correlation in order to reduce the pessimism of
worst-case simulation. They analyzed the empirical perfor-
mance distribution resulting from SPICE model extraction
and simulation of basic building blocks. The extraction was
performed on the routinely collected process fab electrical
test data. The resulting performance correlation was empir-
ically evaluated and circuit primitives grouped accordingly,
thus identifying one worst case model for each group of
primitives. Similarly, authors in [8] proposed to use perfor-
mance correlation measured from extensive Monte-Carlo
(MC) simulations of cell library timing performance in
order to identify clusters of percentile points corresponding
to a pre-defined probability value. Response Surface Meth-
odology (RSM) [3] was used in order to speed-up the
Monte-Carlo runs and maximum likelihood in the process
variable space was applied in order to identify a unique
SPICE model for every cluster. Both these techniques are
based upon the empirically observed value of sample corre-
lation in order to identify the number and position of per-
formance clusters relative to basic circuit primitives. 
Our methodology is based on the fact that the number and
value of worst case models may be uniquely determined by
the cardinality of the space associated with a set of cell
level performances, defined as the number of truly indepen-
dent performance factors. We propose to use Principal
Component Analysis (PCA) in order to determine this car-
dinality and the corresponding worst case models. The
structure of the paper is as follows. In Section 2 we
describe the basic statistical tools used in our work. The
description of the proposed methodology is given in Sec-
tion 3, and the experimental results obtained on a 0.25µm
CMOS standard cell library are discussed in Section 4.
Finally in Section 5 we draw some conclusions and present
future work.
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2.Background

In this section we will synthetically describe some useful
statistical tools that have been used in the derivation of the



proposed worst-case modeling methodology. The three
main statistical tools that we have used are: Response Sur-
face Methodology (RSM) in order to compute simple
macromodels of the circuit performance as a function of
process disturbances, Quadratic Propagation Of Variance
(Q-POV) that has been used to compute analytically the
entries of the performance-level covariance matrix and
Principal Components Analysis (PCA) that has been used
to find the main, linearly independent factors explaining
most of the modules performance variance.

2.1. Response Surface Methodology

RSM is a well known statistical tool that has been applied
in several fields of experimental science to analyze the
unknown cause-effect relation existing between a set of
input factors and a set of responses. A good tutorial over-
view of RSM can be found in [3]. Several authors have
proposed different flavors of RSM applied to the design
for manufacturability and worst case modeling of elec-
tronic circuits and systems, and a good tutorial survey can
be found in [11]. The basic common steps of all these dif-
ferent approaches are the following: i) definition of an
experiment plan, or Design Of Experiments (DOE) ii)
evaluation of the circuit response iii) polynomial fitting of
the responses based on linear or non-linear regression
analysis.
The output of the RSM flow is usually a set of low-order
polynomial equations of the type:

(1)

where  represents the i-th response,  the
m-dimensional vector of input factors and  and 
represent respectively a constant term, a vector of linear
coefficients and a matrix of quadratic coefficients.

2.2. Quadratic Propagation Of Variance (Q-POV)

The statistical properties of the set of random variables 
associated with the system responses is best characterized
in terms of its vector mean  and of its covariance matrix

. The most simple way of computing  and  is by
evaluating them from their definition:

(2)

where  is the joint probability density func-
tion of the set of random variables . The integrals in (2)
can be estimated by using Monte-Carlo analysis. This
however has the drawback of being either computationally

expensive or quite inaccurate, because of large number of
samples required to stabilize MC estimations. As an alter-
native it is possible to solve (2) in terms of the known
input factors probability moments. The problem is simpli-
fied with the aid of a couple of mild assumptions on the
statistical properties of the random vector , i.e. by
assuming that: (i) the input factors are linearly indepen-
dent; (ii) the set of random variables  is a second (or
lower) order polynomial function of the random vector .
In order to simplify the notation, and without  any loss of
generality,it is possible to assume that A is symmetric, as
it is always possible to reduce A to symmetric form other-
wise. In this case, applying the transformation ,
it is possible to show that:

(3)

(4)

Furthermore, if the random vector  has a gaussian distri-
bution then equation (4) can be further simplified as fol-
lows:

(5)

2.3. Principal Component Analysis

The purpose of PCA is to find  standard linear combina-
tions of an -dimensional vector of correlated random
variables (with ), that have the following properties:

i) among all possible standard linear combinations, the
vector of principal components  is the one that has
maximal variance ii) each component of  is linearly
independent from all the others.
The vector of principal components can be obtained by
applying an orthogonal transformation to the original cor-
related variables vector, i.e. [4]:

(6)

where  is an orthogonal  matrix such that:
 is diagonal and all the eigenvalues

 are greater or equal than zero. It is possi-
ble to show that no other standard linear combination of

 has a variance greater than , the first principal com-
ponent, and that the ratio:
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represents the fraction of the total variance of  that is
explained by the first  components of the vector of prin-
cipal components  [4]. Note that, as defined in (6) the
PCA transformation is  as  is a square matrix,
and the reduction of dimensionality occurs only by select-
ing the first  components that explain a predefined frac-
tion of the total variance.

3.PCA BASED WORST CASE MODELING

3.1. Problem Definition

The scope of our work is limited to the derivation of real-
istic worst case models for the performances of a library of
components (e.g. a standard cell library) in a given tech-
nology.
The objectives of the proposed methodology are:

• To determine the minimum number of combinations
of electrical device model parameters sufficient to
characterize the worst case performance of a set of
library cells.

• To find the value of the worst case model parameters,
given a pre-defined assessment of the acceptable level
of risk for a worst performance to occur.

3.2. Methodology flow 

The flow of the proposed worst case modeling methodol-
ogy is shown in Fig. 1.

Figure 1. Flow of the PCA based realistic worst case mod-
eling strategy

The input data consist of a set of measurement results
including electrical tests (I-V curves, , etc.) and in-line
tests (e.g. , etc.) data used to extract a large statisti-
cal set of SPICE models. 
Following this procedure, a possibly very large

 covariance
matrix is obtained, where  represents the number of
first-order parameters for the -th device, and  is the
number of different devices (NMOS, PMOS, etc.) instanti-
ated in the library cells. By using PCA a small number of
independent, device-level principal components is derived
[9]. Then the RSM macromodeling of the cell library per-
formance parameters (timings, power, etc.) is performed.
As different performance parameters are likely to show
different process sensitivities, it is reasonable to expect
multiple different worst-case corners. Once that the RSM
macromodels have been obtained, POV can be used to
generate a performance level covariance matrix, as
explained in Section 2.2. This is the input for a second step
of PCA which will thus generate a vector of Performance-
Level Principal Components. At the same time Monte-
Carlo analysis based on the performance macromodels is
used to determine a vector of marginal percentile points
for the cell performance , i.e. a vector whose i-th com-
ponent  represents the u-percentile of the i-th perfor-
mance. Note that, due to performance correlation, the joint
probability of  may be zero. Next we identify the number
of principal components that are needed to explain a pre-
defined fraction (e.g. 95%) of the total performance vari-
ance. Assuming that  PC are sufficient to explain the
desired fraction of the total performance variance, then it
possible to express each  as:

(7)

where  and  are respectively the mean and the stan-
dard deviation of the performance  and  represents
the projection of  along the k-th principal component

. As performance measures that have maximal projec-
tions in the same PCA sub-space are highly correlated, by
clustering them according to  values it is possible to
identify the cardinality of the performance space, and thus
the number of required worst case corners. The actual
value of worst-case model parameters can now be effec-
tively computed by performing separate reverse modeling
of the  in each cluster. Reverse modeling is performed
as described in [8].

4.Experimental results

We applied our methodology to a 0.25µm CMOS standard
library. Statistical MM9 SPICE models [10] with empiri-
cally determined principal components
( ) have been extracted. We con-
sidered 54 performances of a subset of cells representative
of the library (AND, NAND, NOR, OR, IV, EXOR),
including propagation delay, internal energy per switch-
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ing, transition time measurements. An RSM macromodel
for each performance measure has been created at

, , and input slew time
 by using a CCD [3] design of experiment,

requiring 27 SPICE simulation for each performance, and
achieving an  value (accuracy) always greater than
0.95.
The performance covariance matrix was calculated by
using POV on the RSM macromodels. In Table 1 the min-
imum and maximum correlation coefficient values for all
the possible combinations of different types of perfor-
mance measure are shown. Not surprisingly, similar per-
formance measures show very high correlation
coefficients. This is due to the fact that digital library cells
are characterized by similar architecture and sizing prop-
erties and, therefore, show similar sensitivities to process
disturbances, as heuristically observed in [2], [7], [8]
.

Note that non homogeneous performance measures (out-
diagonal terms) may still show quite high correlation coef-
ficients, but also very low values. This information is still
not sufficient to determine the actual cardinality of the per-
formance space, which can be determined by performance
level PCA as explained in Section 3. In our case the first
two performance-level PC were sufficient to explain
99.14% of the total variance: 82.25% is explained by 
and 16.89% by . As in (7) each performance measure
was expressed as . By
clustering performances according to their projection
coefficients the following 3 groups of performance mea-
sures are obtained. G1 with , G2 with  com-
parable to , G3 with  comparable to .
G1 includes all the rising transition times and all the prop-
agation delays, except those related to falling output tran-
sitions of single stage cells (IV, NAND, NOR). G2
includes all the power measurements. G3 includes all the
falling transition times and all the propagation delays not
in G1. The plot in Fig.  shows the projection coefficients

 and  for the different performance measures,
clearly identifying the 3 different groups. Note that the
correlation coefficient between two different performance
measures is the scalar product of the corresponding vec-

tors. The information displayed in Fig.  is sufficient to
determine the cardinality of the performance space, which
can be graphically associated with the number and size of
sectors shown in the graph. 

Figure 2. Performances projection coefficients along the
principal components. 

Note that despite in some case we have a relatively large
correlation coefficient between power and timing mea-
sures, the lack of overlap between the corresponding sec-
tors give raise to independent clusters. Therefore in our
case two different clusters are observed, one with all the
timings ( ) and the other with all the power mea-
surements (G2).

Figure 3. Scatter plots from 10,000 sample MC.

Based on a 1.35x10-3 probability of a worse performance
to occur (i.e. a 3σ percentile point for normally distributed

Table 1. Minimum and maximum values of correlation 
coefficients
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tion Time
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variables) two different SPICE level worst case models
have been obtained by using the reverse modeling strategy
illustrated in [2]
The scatter plots in Fig. 3 show the results of a 10,000
sample Monte-Carlo, comparing the predictions of the
extracted worst case models (filled squares) with the mar-
ginal percentile point (filled triangles) and the standard
worst-case predictions (dots), for the 3 different groups.
We note that, except for G2, the results of our method are
always slightly more pessimistic than the desired marginal
percentile point. This is however a necessary trade-off in
order to get a common worst case model for all the timing
(or power) performance measurements of a library.

5.Conclusions

A new methodology based on performance level PCA in
order to determine the number and the value of realistic
worst-case models for the performance of module library
components has been presented in this work. By using per-
formance clustering based on Principal Component sub-
space projections it is possible to determine the number
and value of the worst-case corners characterized by a
desired joint probability of a worse performance to occur.
The application of the methodology to a standard cell
library in a 0.25 µm CMOS technology, has demonstrated
the usefulness and accuracy of the proposed method.
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